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Explicit formulae for the Bures metric
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Abstract. The aim of this paper is to derive explicit formulae for the computation of the
Riemannian Bures metricon the manifoldD of (finite-dimensional) nonsingular density matrices

0. This Riemannian metric introduced by Uhlmann generalizes the Fubini—Study metric to mixed
states and is the infinitesimal version of the Bures distance. Several formulae are known for
computing the Bures metric in low dimensions. The formulae presented in this paper allow for
computing in finite dimensions without any diagonalization procedures. The first equations we give
are, essentially, of the forg, = 3" a;; Tr do o'~ do 0/ ~2, whereq;; is a matrix of invariants of

o. Afurther formula,g, = 3 ¢;; dp; ® dp; + 3" b;; Tr do o' L do o/ 72, is adapted to the local
orthogonal decompositioR ~ R" x U(n)/T" at generic points.

1. Introduction

In recent years many authors considered the Bures metric and the Bures distance because of
their importance in quantum statistics and for the understanding of the geometry of quantum
state spaces. Explicit computations in this area meet some technical difficulties, since, for
example, the Bures metric is defined rather implicitly. The aim of this paper is to provide
several equations for computing the Bures metric in any finite dimension using only matrix
products, determinants and traces.

Let D be the manifold of all positive, Hermitiamxn-matrices. The submanifold of
trace-one matrices is the space of so-called completely entangled mixed states of a finite-
dimensional quantum system. The tangent spa@donsists of all Hermitian xn-matrices
and the Riemannian Bures metric Pris given by [1],

X, X)=31TrX'G X, X' eT,D (1)
wheregG is the (unique) solution of

It should be mentioned, that (1) also defines a metric on the manifgldé$ rankk densities,

k < n. In this case equation (2) has solutiaéifor X € T,D;. This solution is not unique,

but the right-hand side of (1) is still well defined & e T,D,. However, we will deal here

with the maximal rankk = n, only. This metric appears quite naturally on the background

of purifications of mixed states and is used in quantum statistics to describe the statistical
distance of mixed states [13]. It is an extremal monotone metric, [12], and seems to be quite
distinguished for physical and mathematical reasons, see e.g. [3].
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Several formulae and approaches for computing the Bures metric have been given,
e.g. [1,4-8]. Based on the integral representation (cf [9]) of the solution of (2) the metric
takes the form [1],

1 oo
g(X', X) = ETr/ X'e e xe e dr.
0
Moreover, if o), « = 1,2,..., are eigenvectors qf with eigenvalues.,, then a simple
calculation shows that (1) yields [4],
1« @lX|8)?
X, X)=2) ———
8o( ) > Z S+ g
B
Both formulae are not explicit in the sense that they need the knowledge of eigenvatues of
Instead we are looking for equations in a finite dimension similar to

g d(detp) ® d(detp) + % Tr do do (see [1}) 3)

~ 4deto

1 1
=ZTr{deQ+E(dQ—QdQ)(dQ—QdQ)} (4)

which hold for normalized (To = 1), nonsingular 2< 2-density matrices (see also [5] for

n = 3). They do not require any diagonalization procedure. In section 2 we provide such
expressions which generalize (4) to arbitrary oo using a method of the theory of matrix
equations. In section 3 we give an equation similar to (3), but adapted to the local isometric
decomposition of the manifol?. We will not suppose the normalization dr= 1, this case

is included in our expressions by settipg:= Tro = 1 and ¢p; = 0.

Notations. The following quantities depend on a positive (resp. non-negative), Hermitian
n x n-matrix . In order to simplify the notation the dependenceponill be suppressed. By
A1 < --- < Ay, 0 < A4, we denote the eigenvaluesgénd by A the corresponding diagonal
matrix. o is called a generic point db if ¢ > 0 and all eigenvalues are different. Moreover,
V will be the Vandermonde matr'(x{_l) [11]. Operators acting on matrices are denoted by
bold italic letters, in particular, if not indicated otherwis&, and R denote the left and right
multiplication byo. The Bures metric now takes the form
1 1

We set

x (@) =dettl— o) =1" +kyt" P+ +k,

ko := landk; :=0fork > nork < 0. Henceg; := (—1)' k; is the elementary invariant of
degree and(—1)"x (r) the characteristic polynomial @f. We sef; := Tro’ = A} +---+Al,
then the differentiatip; applied to a tangent vectoX yieldsdp; (X) =i Tr Xo'~1. Finally,
we will make use of the following matrix several times:

P1 P2 v Pn
P2  P3  -.. P+l

p=|"" 0 (6)
Pn Pn+1 .-+ P2m-1

For instance, we have the following.
Criterion. A Hermitiann xn-matrix o > 0is a generic point oD if detP # 0.
Indeed,P = VTAV. Therefore, deP = det(A) det(V)? = det(p) [T — 1)
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2. General formulae

From now on we suppose thatis positive. In order to calculatg, (X', X) one has to solve

the matrix equation (2). The matrix (resp. operator) equaliGh— G F = X was intensively
studied (for a review, see [9]). Basically, it has a unique solu@iah £ and F have disjoint
spectra (Sylvester—Rosenblum theorem [9]). In our matrix dase,o = —F, this is fulfilled
because is positive. The uniqueness is also clear, not appealing to this theorem, since we may
suppose w.l.0.g. thatis diagonal. Then equation (2) rea@ds+A;)G;; = X;;;i,j =1,...n.

A further, simple but nice, tool in this theory is the use of similarities of block matrices, in our

case e.g.
1 -G||— X||1 G| _|—-0 O
0 1 0 of|l0 2| |0 o
If we apply the polynomialy as an operator function to both sides we get in the upper-right
box the identity

x(=0)G+M =0

whereM is the upper-right box of applied to the above inner matrix containikg
n i—1
M= ki) (—0)Xo"™ /™t @)
i=1 i=0

But x (—o) is invertible. This can be seen as follows. The characteristic polynomiabof
equals(—1)" x (—t) and the positivity ofo implies thaty (+) and x(—¢) have no common
divisors. Hence, by the Euclidean algorithm there exists two polynomiadssuch that
p@)x () +q@)x(—t) =1, and inserting givesq (o) x (—o) = 1. Therefore, the solutio
of (2) is given by

n i—1
G=—x(-0)"Y kni ) (o) Xo" " (8a)
i=1 j=0
or, in a more compact form,

e (e 2)

The first explicit formula we get for the Bures metric is the following.

Proposition 1.

A 0 O][x(-&>* © -0 X
= tn2 0 (Y o

The inverse of (—p) is again a polynomial expressiondn Therefore, we can rewrite 43
using the Cayley—Hamilton theorem a@idwill have the form_, ; ., a;j0'* X0/ ~*, where
the coefficients;; are invariants op. That means,

1 i—1pj—-1
= Z Cl,'le_ R/~ (103.)
L+R 1<i,j<n

={d,L,...,L"HYAUd4,R,...,R"™ YT A= (a;j). (100)

Of course, one can also directly see the existence of such a representation. The dpet&tor
acts on a finite-dimensional space. Therefore, its inverse is a polynoniiat iR, which we
can reduce to the above form usipgL) = L, ) = 0 and similarly forR. The solution of (2)
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given by Smith in [10] is, essentially, of this form. The formulae for the coefficients in terms
of the invariants op that one reads off from [10] will be given at the end of this section.

The representation (10) is unique provigei$ generic. Indeed, if there were coefficients
suchthaty ., i, a;jL"*lR/'*l = 0 then applying this operator to all vectors of a common
eigenbasis off. and R would result inVTA’V = 0. But the Vandermonde matriX is
nonsingular for a generig and we would conclude{j = 0. Moreover, in the generic case the
matrix A is necessarily symmetric.

In order to get a compact expression for the coefficient matrir (10) we define the
nxn-matrix K by

0 1 0 0
0 0 1 ... 0
K= : : : Co - (11)
0 0 0 01
_kn _kn—l —hKkn-2 ... _kl
K carries out the reduction of powers@by x (0) = 0. Indeed we have

0 1

0? 0

.| =K .

Qn Qn—l

and similarly for the reduction of powers @& and R. Thus, the multiplication of (1) by
L+ Rleads to

KTA+AK =C
where
1 0 0
0 O 0
C=1. . :
0O 0 ... 0

represents the identity operatdd = L°RC. Note thatK has the same characteristic
polynomial asp. Now we may proceed as above to fidd For this purpose we apply

x (1) to

1 -A|[-k" Cc]|[1 A] _[-K" O

0 1 0 K||0O 1|]"|] 0O K|
Instead of (8) and (7) we obtain

A=—x(-KDH7IN
where

KT i =X o
N:"([ 0 C]) =D ki ) (~KT/CKI
K1)12 i=1 j=0

kn—1 kn2 ... k1
—ky2 —ky3 ... =1 0 _
= : : c | = IEY el e (12)
(=t 0 ... 0 0
To see the last equation note that! C K/ has only one in thé + 1, j + 1)-position and zero

otherwise;K moves the ‘1’ coming front to the right andk ™ moves it down. Hence we get
the following.
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Proposition 2. The Bures metric equals
g=73 Z a;; Tr do o' tdoo’™* (13)
ij=1
where(a;;) = —x(—KT)~IN, K and N are given by (12) and (11).
The probably ‘most explicit’ form of the coefficients; is given by the following.
Proposition 3. (Smith [10]):

(—1)i noi l+J+r+s
= 1) k k@ 14
ai; 2detHr2:Z( )’ ( 5 (14)
where
ki ks ... ko
ko ko ... kg,,_g n
H=\. . . : = lk2j=ili j=
0 0 ... Kk,

and ®(m) = 0 if m is not an integer, and otherwisé (m) is the cofactor indetH of the
element in the first row anath column ofH.

Remark. The determinant off is not equal to zero, more precisely:
detH = (—1)"%" ]"[x [Tc +2p #o0.

i<j

n(n+1)

Indeed, changing the order of rows and columns yielddtet (—1) "z detle,+1-2i+;].
But the last determinant is just the (symmetric) Schur function of the eigenvalagsfdfL1],
1.3) related to the partitiotn,n—1, ..., 1) = (1,...,)+(m—1,..., 0) leading to the above
product.

3. Aformula adapted to D =~ R™ x U(n)/T"

Everyo € D can be diagonalized with a suitable unitaty
0= up’u* n=diag(u, - . ., i) i € Ry
and we have d = 2up dp u* + u [u* du, u?Ju*. By a straightforward calculation we find

(do) = u (ul dyu + ([u* d, /f])) u*

L, +R, L+ Ry,
and
1 * 2 1 * 2
8o =Trdudu+ ETr[u du, n ]W([u du, uc)). (15)

Therefore, in a neighbourhood of a generic point the Riemannian mafifloically looks like
R" x Y™ /1, whereR" is equipped with the standard metric and the metric on the homogeneous
space Wn)/T" depends on the first parameter. The tangent spagsyatts into

T,D=T)+Tl* (16)
where 'IQ is the subspace of Hermitian matrices commuting witlts orthogonal complement

(wrt. the Bures metric) is the space of all p], a is anti-Hermitian. Ifo is diagonal then (16)
is the decomposition into diagonal and off-diagonal Hermitian matrices.
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From now on letp be a generic point ob. By P and P+ = Id — P we denote the
(orthogonal) projectors onto the subspaces in (16).

Lemma.
P(X)= )Y o'(P™h;Trxo/™* (17a)
i,j=1
=Y (P Ho'Xe' ™t (1)
i,j=1

whereP is the matrix of power invariants given by (6).

Proof. To show (1) we use that for a generie the powers, @2, ..., o" form a basis of
the vector space of all Hermitian matrices commuting witiMoreover,P;; = Tro'*/~1 =
4g,(0",0')and TrXo/~1 = 4g,(X, o). Bearing this in mind (1) is just the usual formula
for the orthogonal projection onto a subspace with a given basis;

P() = > bi({balbp));; (b;v).
i,J

To see (1B) let X5, o, B = 1,..., n be a common eigenbasis bfand R, 0Xog = Ao Xop,
Xop@ = MpXap (Xop Mmay not be Hermitian). Then the complex span gfr§sp. T is
generated by alK.s with @« = g resp.a # B. ForX = X,z the right-hand side of (13)
yieldsnes Xqp, Where

n
— i~j—1 —
Nap = Y (P7DijAhy — = (AVP TV ).
i,j=1

V is the Vandermonde matrix of eigenvaluepofBut P = VTAV impliesnys = 8up. O

From (17) we now get

1 14 . dp;
PX)=:= =toph, Hlx
g PO Zi,Zf (P —+(X)

n

1 N 1 i-ly j-1
mP (X)—”Z=1{aij—§(1J )ij}Q Xo

where we used TfXo/~* = dp;(X) and 25 (X) = 307X for X € T!l. The matrix(a;;) is

given by proposition 2 or 3. Inserting these equations into
1 1 1
= = Tr | P(do)———P(do) + do —— P*(d
g 2r<(Q)L+R(Q) °TTR (Q))
yields the following.

Proposition 4. The decompositiog = g, + g,,, of the Bures metric is given by

n n

1 dp;, ., dp;, 1 _ i i
g=3 > (P 1),»,»% +2 D0 @a;— (PTH,) Trdoo’ ™ doo/ ™ (18)
ij=1

i,j=1
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4. Examples

Propositions 1-4 involve elementary and power invariants, which can be expressed by each
other (cf [11]). Rewriting the identity

Mk + Y prkim—y =0 m=12...

r=1
as a system of linear equations for theesp. thep; one obtains the relations
1 1 o ... O
D2 P1 2 ... 0
1 : :
e = l_| det : : : :
pi-1 pi-2 pi-3 ... i—1
pi Pi-1 pPi-2 ... Pp1
e1 1 o ... 0
2e; e1 1 ... 0
(i—l)ei_l e_2 €_-3 ... 1
ie,- e_1 €_2 ... €1
This identity also allows for expressing a power invarigit m > n, by invariants of a
degree less or equal to Especially the + 1-row of our matrixP equalS(p;+1, . . ., pu+i) =

(pl’ ey pn)Ki-

The number of terms in propositions 1-4 rapidly increases with the dimensidhus
we give only certain expressions fer= 2, 3 in terms of power resp. elementary invariants.
Concerning proposition 1 we get

Tr X' (0% + e10 + e21) 1 (0X — Xo +e1X) forn =2
g(X'. X) =3 TrX'(o®+e10” +e20 +e3) !
X(QZX—QXQ+XQ2+€1(QX—XQ)+62X) forn = 3.
The following terms appear in propositions 2—4:

n=2:
1

d
bt e[ ()
" Apips—ph)  * 27l=p2 1 J\ P

1 e1€2 —262i| (del)
=————(d , d
46‘2(@% — 462) ( ‘1 62) |:—2€2 e1 d62

1 [e2+e; —er
A= —
2e1e2 —e1 1
oA_ pl_ 22 [—26’2 61]2 2 . [Pz—Pf p1]
er(€? —4dey) | a2 -2 p1(2p2 — p7) 1 -2
n=3:

detpP = —Pg +2pap3ps — PlPi - P%Ps + p1p3ps
1 1 Paps — Py papa— P21295 p2pa— P
= m pPips — P3 p2p3 — P11274
* pips — pP3
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1 eleg + efeg — ege3 —e%ez e1ex — e3
_ 3 2
 2e3(e1e2 — €3) - ares ‘1
* * el
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