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Explicit formulae for the Bures metric

J Dittmann†
Mathematisches Institut, Universität Leipzig, Augustusplatz 10/11, 04109 Leipzig, Germany

Received 1 September 1998

Abstract. The aim of this paper is to derive explicit formulae for the computation of the
Riemannian Bures metricg on the manifoldD of (finite-dimensional) nonsingular density matrices
%. This Riemannian metric introduced by Uhlmann generalizes the Fubini–Study metric to mixed
states and is the infinitesimal version of the Bures distance. Several formulae are known for
computing the Bures metric in low dimensions. The formulae presented in this paper allow for
computing in finite dimensions without any diagonalization procedures. The first equations we give
are, essentially, of the formg% =

∑
aij Tr d% %i−1 d% %j−1, whereaij is a matrix of invariants of

%. A further formula,g% =
∑
cij dpi ⊗ dpj +

∑
bij Tr d% %i−1 d% %j−1, is adapted to the local

orthogonal decompositionD ≈ Rn × U(n)/Tn at generic points.

1. Introduction

In recent years many authors considered the Bures metric and the Bures distance because of
their importance in quantum statistics and for the understanding of the geometry of quantum
state spaces. Explicit computations in this area meet some technical difficulties, since, for
example, the Bures metric is defined rather implicitly. The aim of this paper is to provide
several equations for computing the Bures metric in any finite dimension using only matrix
products, determinants and traces.

Let D be the manifold of all positive, Hermitiann×n-matrices. The submanifold of
trace-one matrices is the space of so-called completely entangled mixed states of a finite-
dimensional quantum system. The tangent space T%D consists of all Hermitiann×n-matrices
and the Riemannian Bures metric onD is given by [1],

g%(X
′, X) = 1

2 TrX′G X,X′ ∈ T%D (1)

whereG is the (unique) solution of

%G +G% = X. (2)

It should be mentioned, that (1) also defines a metric on the manifoldsDk of rankk densities,
k < n. In this case equation (2) has solutionsG for X ∈ T%Dk. This solution is not unique,
but the right-hand side of (1) is still well defined forX′ ∈ T%Dk. However, we will deal here
with the maximal rankk = n, only. This metric appears quite naturally on the background
of purifications of mixed states and is used in quantum statistics to describe the statistical
distance of mixed states [13]. It is an extremal monotone metric, [12], and seems to be quite
distinguished for physical and mathematical reasons, see e.g. [3].
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Several formulae and approaches for computing the Bures metric have been given,
e.g. [1, 4–8]. Based on the integral representation (cf [9]) of the solution of (2) the metric
takes the form [1],

g(X′, X) = 1

2
Tr
∫ ∞

0
X′e−t%Xe−t% dt.

Moreover, if |α〉, α = 1, 2, . . ., are eigenvectors of% with eigenvaluesλα, then a simple
calculation shows that (1) yields [4],

g%(X,X) = 1

2

∑
α,β

|〈α|X|β〉|2
λα + λβ

.

Both formulae are not explicit in the sense that they need the knowledge of eigenvalues of%.
Instead we are looking for equations in a finite dimension similar to

g = 1

4 det%
d(det%)⊗ d(det%) +

1

2
Tr d% d% (see [1]) (3)

= 1

4
Tr

{
d% d% +

1

det%
(d% − % d%)(d% − % d%)

}
(4)

which hold for normalized (Tr% = 1), nonsingular 2× 2-density matrices (see also [5] for
n = 3). They do not require any diagonalization procedure. In section 2 we provide such
expressions which generalize (4) to arbitraryn < ∞ using a method of the theory of matrix
equations. In section 3 we give an equation similar to (3), but adapted to the local isometric
decomposition of the manifoldD. We will not suppose the normalization Tr% = 1, this case
is included in our expressions by settingp1 := Tr % = 1 and dp1 = 0.

Notations. The following quantities depend on a positive (resp. non-negative), Hermitian
n× n-matrix%. In order to simplify the notation the dependence on% will be suppressed. By
λ1 6 · · · 6 λn, 0 6 λi , we denote the eigenvalues of% and by3 the corresponding diagonal
matrix. % is called a generic point ofD if % > 0 and all eigenvalues are different. Moreover,
V will be the Vandermonde matrix(λj−1

i ) [11]. Operators acting on matrices are denoted by
bold italic letters, in particular, if not indicated otherwise,L andR denote the left and right
multiplication by%. The Bures metric now takes the form

g = 1

2
Tr d%

1

L +R
d%. (5)

We set

χ(t) := det(t1− %) = tn + k1t
n−1 + · · · + kn

k0 := 1 andki := 0 for k > n or k < 0. Hence,ei := (−1)i ki is the elementary invariant of
degreei and(−1)nχ(t) the characteristic polynomial of%. We setpi := Tr %i = λi1 + · · ·+λin,
then the differentialdpi applied to a tangent vectorX yieldsdpi(X) = i TrX%i−1. Finally,
we will make use of the following matrix several times:

P :=


p1 p2 . . . pn
p2 p3 . . . pn+1
...

...
...

...

pn pn+1 . . . p2n−1

 . (6)

For instance, we have the following.

Criterion. A Hermitiann×n-matrix% > 0 is a generic point ofD if detP 6= 0.

Indeed,P = V T3V . Therefore, detP = det(3) det(V )2 = det(%)
∏
i<j (λi − λj )2.
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2. General formulae

From now on we suppose that% is positive. In order to calculateg%(X′, X) one has to solve
the matrix equation (2). The matrix (resp. operator) equationEG−GF = X was intensively
studied (for a review, see [9]). Basically, it has a unique solutionG if E andF have disjoint
spectra (Sylvester–Rosenblum theorem [9]). In our matrix case,E = % = −F , this is fulfilled
because% is positive. The uniqueness is also clear, not appealing to this theorem, since we may
suppose w.l.o.g. that% is diagonal. Then equation (2) reads(λi +λj )Gij = Xij ; i, j = 1, . . . n.
A further, simple but nice, tool in this theory is the use of similarities of block matrices, in our
case e.g. [

1 −G
0 1

] [−% X

0 %

] [
1 G

0 1

]
=
[−% 0

0 %

]
.

If we apply the polynomialχ as an operator function to both sides we get in the upper-right
box the identity

χ(−%)G +M = 0

whereM is the upper-right box ofχ applied to the above inner matrix containingX;

M =
n∑
i=1

kn−i
i−1∑
j=0

(−%)jX%i−j−1. (7)

But χ(−%) is invertible. This can be seen as follows. The characteristic polynomial of−%
equals(−1)nχ(−t) and the positivity of% implies thatχ(t) andχ(−t) have no common
divisors. Hence, by the Euclidean algorithm there exists two polynomialsp, q such that
p(t)χ(t) + q(t)χ(−t) = 1, and inserting% givesq(%)χ(−%) = 1. Therefore, the solutionG
of (2) is given by

G = −χ(−%)−1
n∑
i=1

kn−i
i−1∑
j=0

(−%)jX%i−j−1 (8a)

or, in a more compact form,[−1 G

0 0

]
= −

[
χ(−%)−1 0

0 0

]
χ

([−% X

0 %

])
. (8b)

The first explicit formula we get for the Bures metric is the following.

Proposition 1.

g(X′, X) := −1

2
Tr

[
0 0
X′ 0

] [
χ(−%)−1 0

0 0

]
χ

([−% X

0 %

])
. (9)

The inverse ofχ(−%) is again a polynomial expression in%. Therefore, we can rewrite (8a)
using the Cayley–Hamilton theorem andGwill have the form

∑
16i,j6n aij%

i−1X%j−1, where
the coefficientsaij are invariants of%. That means,

1

L +R
=

∑
16i,j6n

aijL
i−1Rj−1 (10a)

= (Id,L, . . . ,Ln−1)A(Id,R, . . . ,Rn−1)T A := (aij ). (10b)

Of course, one can also directly see the existence of such a representation. The operatorL +R
acts on a finite-dimensional space. Therefore, its inverse is a polynomial inL +R, which we
can reduce to the above form usingχ(L) = Lχ(%) = 0 and similarly forR. The solution of (2)
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given by Smith in [10] is, essentially, of this form. The formulae for the coefficients in terms
of the invariants of% that one reads off from [10] will be given at the end of this section.

The representation (10) is unique provided% is generic. Indeed, if there were coefficients
such that

∑
16i,j6n a

′
ijL

i−1Rj−1 = 0 then applying this operator to all vectors of a common
eigenbasis ofL andR would result inV TA′V = 0. But the Vandermonde matrixV is
nonsingular for a generic% and we would concludea′ij = 0. Moreover, in the generic case the
matrixA is necessarily symmetric.

In order to get a compact expression for the coefficient matrixA in (10) we define the
n×n-matrixK by

K :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...

0 0 0 . . . 1
−kn −kn−1 −kn−2 . . . −k1

 . (11)

K carries out the reduction of powers of% by χ(%) = 0. Indeed we have
%

%2

...

%n

 = K


1
%
...

%n−1


and similarly for the reduction of powers ofL andR. Thus, the multiplication of (10b) by
L +R leads to

KTA +AK = C
where

C :=


1 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0


represents the identity operatorId = L0R0. Note thatK has the same characteristic
polynomial as%. Now we may proceed as above to findA. For this purpose we apply
χ(t) to [

1 −A
0 1

] [−KT C

0 K

] [
1 A

0 1

]
=
[−KT 0

0 K

]
.

Instead of (8) and (7) we obtain

A = −χ(−KT)−1N

where

N = χ
([−KT C

0 K

])
1 2

=
n∑
i=1

kn−i
i−1∑
j=0

(−KT)jCKi−j−1

=


kn−1 kn−2 . . . k1 1
−kn−2 −kn−3 . . . −1 0
...

...
...

...

(−1)n−1 0 . . . 0 0

 = [(−1)i+1kn+1−i−j ]ni,j=1. (12)

To see the last equation note thatKTiCKj has only one in the(i + 1, j + 1)-position and zero
otherwise;K moves the ‘1’ coming fromC to the right andKT moves it down. Hence we get
the following.
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Proposition 2. The Bures metric equals

g = 1
2

n∑
i,j=1

aij Tr d% %i−1 d% %j−1 (13)

where(aij ) = −χ(−KT)−1N ,K andN are given by (12) and (11).

The probably ‘most explicit’ form of the coefficientsaij is given by the following.

Proposition 3. (Smith [10]):

aij = (−1)i

2 detH

n−i∑
r=0

n−j∑
s=0

(−1)rkrks8

(
i + j + r + s

2

)
(14)

where

H =


k1 k3 . . . k2n−1

k0 k2 . . . k2n−2
...

...
...

...

0 0 . . . kn

 = [k2j−i ]ni,j=1

and8(m) = 0 if m is not an integer, and otherwise8(m) is the cofactor indetH of the
element in the first row andmth column ofH .

Remark. The determinant ofH is not equal to zero, more precisely:

detH = (−1)
n(n+1)

2

∏
i

λi
∏
i<j

(λi + λj ) 6= 0.

Indeed, changing the order of rows and columns yields detH = (−1)
n(n+1)

2 det[en+1−2i+j ].
But the last determinant is just the (symmetric) Schur function of the eigenvalues of% (cf [11],
I.3) related to the partition(n, n−1, . . . ,1) = (1, . . . ,1)+(n−1, . . . ,0) leading to the above
product.

3. A formula adapted toD ≈ Rn × U(n)/Tn

Every% ∈ D can be diagonalized with a suitable unitaryu;

% = uµ2u∗ µ = diag(µ1, . . . , µn) µi ∈ R+

and we have d% = 2uµ dµu∗ + u [u∗ du,µ2]u∗. By a straightforward calculation we find

1

L% +R%

(d%) = u
(
µ−1 dµ +

1

Lµ2 +Rµ2
([u∗ du,µ2])

)
u∗

and

g% = Tr dµ dµ +
1

2
Tr[ u∗ du,µ2 ]

1

L2
µ +R2

µ

([u∗ du,µ2]). (15)

Therefore, in a neighbourhood of a generic point the Riemannian manifoldD locally looks like
Rn×U(n)/Tn , whereRn is equipped with the standard metric and the metric on the homogeneous
space U(n)/Tn depends on the first parameter. The tangent space at% splits into

T%D = T||% + T||⊥% (16)

where T||% is the subspace of Hermitian matrices commuting with%. Its orthogonal complement
(wrt. the Bures metric) is the space of all [a, %], a is anti-Hermitian. If% is diagonal then (16)
is the decomposition into diagonal and off-diagonal Hermitian matrices.
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From now on let% be a generic point ofD. By P andP⊥ = Id− P we denote the
(orthogonal) projectors onto the subspaces in (16).

Lemma.

P (X) =
n∑

i,j=1

%i(P−1)ij TrX%j−1 (17a)

=
n∑

i,j=1

(P−1)ij %
iX%j−1 (17b)

whereP is the matrix of power invariants given by (6).

Proof. To show (17a) we use that for a generic% the powers%, %2, . . . , %n form a basis of
the vector space of all Hermitian matrices commuting with%. Moreover,Pij = Tr %i+j−1 =
4g%(%i, %j ) and TrX%j−1 = 4g%(X, %j ). Bearing this in mind (17a) is just the usual formula
for the orthogonal projection onto a subspace with a given basis;

P(v) =
∑
i,j

bi(〈bα|bβ〉)−1
ij 〈bj |v〉.

To see (17b) letXαβ , α, β = 1, . . . , n be a common eigenbasis ofL andR, %Xαβ = λαXαβ ,
Xαβ % = λβXαβ (Xαβ may not be Hermitian). Then the complex span of T||

% resp. T||⊥% is
generated by allXαβ with α = β resp.α 6= β. ForX = Xαβ the right-hand side of (17b)
yieldsηαβXαβ , where

ηαβ =
n∑

i,j=1

(P−1)ij λ
i
αλ

j−1
β = (3VP−1V T)αβ.

V is the Vandermonde matrix of eigenvalues of%. ButP = V T3V impliesηαβ = δαβ . �

From (17) we now get

1

L +R
P (X) = 1

2

n∑
i,j=1

%i−1(P−1)ij
dpj
j
(X)

1

L +R
P⊥(X) =

n∑
i,j=1

{
aij − 1

2
(P−1)ij

}
%i−1X%j−1

where we used TrjX%j−1 = dpj (X) and 1
L+R (X) = 1

2%
−1X for X ∈ T||. The matrix(aij ) is

given by proposition 2 or 3. Inserting these equations into

g = 1

2
Tr

(
P (d%)

1

L +R
P (d%) + d%

1

L +R
P⊥(d%)

)
yields the following.

Proposition 4. The decompositiong = g�T|| + g�T||⊥ of the Bures metric is given by

g = 1

4

n∑
i,j=1

dpi
i
(P−1)ij

dpj
j

+
1

4

n∑
i,j=1

(2aij − (P−1)ij )Tr d% %i−1 d% %j−1. (18)
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4. Examples

Propositions 1–4 involve elementary and power invariants, which can be expressed by each
other (cf [11]). Rewriting the identity

mkm +
m∑
r=1

prkm−r = 0 m = 1, 2, . . .

as a system of linear equations for theei resp. thepi one obtains the relations

ei = 1

i!
det


p1 1 0 . . . 0
p2 p1 2 . . . 0
...

...
...

...

pi−1 pi−2 pi−3 . . . i−1
pi pi−1 pi−2 . . . p1



pi = det


e1 1 0 . . . 0
2e2 e1 1 . . . 0
...

...
...

...

(i−1)ei−1 ei−2 ei−3 . . . 1
iei ei−1 ei−2 . . . e1

 .
This identity also allows for expressing a power invariantpm, m > n, by invariants of a
degree less or equal ton. Especially thei + 1-row of our matrixP equals(pi+1, . . . , pn+i ) =
(p1, . . . , pn)K

i .
The number of terms in propositions 1–4 rapidly increases with the dimensionn. Thus

we give only certain expressions forn = 2, 3 in terms of power resp. elementary invariants.
Concerning proposition 1 we get

g(X′, X) := 1
2


TrX′(%2 + e1% + e21)−1(%X −X% + e1X) for n = 2
TrX′(%3 + e1%

2 + e2% + e31)−1

×(%2X − %X% +X%2 + e1(%X −X%) + e2X) for n = 3.

The following terms appear in propositions 2–4:

n = 2:

g�T|| =
1

4(p1p3− p2
2)
(

dp1

1 ,
dp2

2 )

[
p3 −p2

−p2 p1

]( dp1

1
dp2

2

)
= 1

4e2(e
2
1 − 4e2)

( de1 , de2 )

[
e1e2 −2e2

−2e2 e1

](
de1

de2

)

A = 1

2e1e2

[
e2

1 + e2 −e1

−e1 1

]
2A− P−1 = 2

e1(e
2
1 − 4e2)

[−2e2 e1

e1 −2

]
= 2

p1(2p2 − p2
1)

[
p2 − p2

1 p1

p1 −2

]

n = 3:

detP = −p3
3 + 2p2p3p4 − p1p

2
4 − p2

2p5 + p1p3p5

P−1 = 1

detP

[
p3p5− p2

4 p3p4 − p2p5 p2p4 − p2
3

∗ p1p5− p2
3 p2p3− p1p4

∗ ∗ p1p3− p2
2

]
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A = 1

2e3(e1e2 − e3)

[
e1e

2
2 + e2

1e3− e2e3 −e2
1e2 e1e2 − e3

∗ e3
1 + e3 −e2

1
∗ ∗ e1

]
.
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